IRES
INFRARED EARTH SENSOR

IRES is a two axis infrared Earth horizon sensor for accurate measurement of pitch and roll attitude angles with respect to the Earth disk centre. It is used in three-axes stabilised spacecrafts operating in GEO (Geostationary Earth Orbit) and MEO (Medium Earth Orbit).

Due to its extended acquisition and operational capabilities, IRES allows meeting transfer orbit operations of different launchers.

The operating principle is based on electro-mechanical modulation of the radiation coming from the Earth horizon in the 14-16.25 μm band. Four IR (Infrared) beams in a single telescope swung by a mirror along a scan path of 45° Earth latitude North and South, generates Earth/Space and Space/Earth pulses. These are compared in phase with the internal encoder reference to derive Pitch and Roll measurements.

IRES consists of an optical head packaged with the processing electronics in a single housing for the two axis measurement. Pitch and Roll are computed inside the sensor by means of a dedicated ASIC: no calibration by AOCS is needed to achieve the declared performance.

HERITAGE

SELEX Galileo started developing infrared Earth sensors for the Earth horizon detection during 1960. Several IRES generations were developed (around 300 units sold), all based on the same earth horizon detection concept that provides Pitch and Roll direct output. SELEX Galileo IRES has already experienced hundreds of years of successful in-flight life in the frame of many programmes.

Historic program including infrared earth sensor from SELEX Galileo are: AGILA, AMC12, AMC13, AMOS, APSTAR, ARABSAT, ARTEMIS, ASIASAT, Astra, DFH/FO, DFH3, DRS, ECS, EUTELSAT24, EUTELSAT1/2/3, EURASIASAT, KOREASAT-5, GSTV-V2A and GSTB-V2B, HISPASAT, INMARSAT, ITALSAT, MARECS, NAHUELSAT, OLYMPUS, ORION, OTS, RASCOM, SICRAL, SINOSAT, SIRIUS2, SKYNET, SYRACUSE-3A, SYRACUSE-3B, THAICOM, TURKSAT.

The latest generation of IRES (IRES-N2) is based on the same concept and offers the same performance and interfaces as the previous generation. IRES-N2 is based on pyroelectric detectors, is ITAR free and lower cost with respect to the previous IRES generation.

IRES-N2 is selected for the Galileo Constellation IOV phase satellites.
TECHNICAL CHARACTERISTICS

Operating modes
Earth acquisition mode (Wide Scan)
Earth pointing mode (Narrow Scan)
Chord mode (single beam crossing)

Performances
Operating band: 14-16.25 µm wavelength
Earth acquisition mode: between 15,300 and 53,000 Km altitude
Operational capability: up to 140,000 Km altitude
Operational range at GEO
Pointing mode linear range: ±5.5° pitch; ±2.5° roll
Acquisition mode linear range: ±11° pitch; ±2.5° roll
Chord mode linear range: ±23° pitch; ±14° roll
Acquisition mode sign range: ±22° pitch; ±13° roll
Output data rate: 10 Hz
Accuracy: <0.05 deg random error (3σ)
<0.02 deg bias error

Data Interfaces
Digital serial interface 32 / 48 bit or MIL-STD-1553B available

Mechanical Interfaces
Dimensions: 169.9 x 163.8 x 156 mm
Mass: <2.5 Kg

Electrical interfaces
24 to 50 V or 75 to 100 V Unregulated Power Bus
Power consumption: <4 W

Environmental conditions
Operating temperature: -30° ÷ +60° C
Storage temperature: -40° ÷ +65° C
Ambient and space vacuum pressure
Vibration levels: Sine: 20 g peak
Random: 26 g rms
Shock: 2000g from 3 to 10 kHz
Lifetime in GEO: > 15 years